If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2+4x+11=0
a = -10; b = 4; c = +11;
Δ = b2-4ac
Δ = 42-4·(-10)·11
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{114}}{2*-10}=\frac{-4-2\sqrt{114}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{114}}{2*-10}=\frac{-4+2\sqrt{114}}{-20} $
| 50=-4.9(x) | | -p/6=5 | | x2-5x=-5(x-10) | | -5x-18=60 | | 8x+9=16x+3 | | F+8.4•f=470 | | 2(n-3)=2n-11 | | 2(2x+4)-2x=x+12 | | 6n-50=9n-5 | | 2(y2-15)=y(y+10) | | 18=13^x | | 7^3x+449^2x+1=0 | | 1.00x+68=85 | | 2x+4(x-2)=4x+8 | | 194=64-w | | 18x+9=20x-5 | | 4.7r+5/3=9.2 | | 68/1x=85 | | 2r=5r+3 | | 12x2+10x+2=0 | | 16x=1/5 | | -12p+1=-13p+2 | | 36^7x+1=216^3x-2 | | 85/x=68 | | 285=204-u | | 2(4x+2)=7-x | | 68/x=85 | | 402=2s | | 8x-9=10x+13 | | 11=17y/5 | | 32=-4+y | | 8x=10x+22 |