-11,5+3/5x=4/20x+8,5

Simple and best practice solution for -11,5+3/5x=4/20x+8,5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -11,5+3/5x=4/20x+8,5 equation:



-11.5+3/5x=4/20x+8.5
We move all terms to the left:
-11.5+3/5x-(4/20x+8.5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 20x+8.5)!=0
x∈R
We get rid of parentheses
3/5x-4/20x-8.5-11.5=0
We calculate fractions
60x/100x^2+(-20x)/100x^2-8.5-11.5=0
We add all the numbers together, and all the variables
60x/100x^2+(-20x)/100x^2-20=0
We multiply all the terms by the denominator
60x+(-20x)-20*100x^2=0
Wy multiply elements
-2000x^2+60x+(-20x)=0
We get rid of parentheses
-2000x^2+60x-20x=0
We add all the numbers together, and all the variables
-2000x^2+40x=0
a = -2000; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-2000)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-2000}=\frac{-80}{-4000} =1/50 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-2000}=\frac{0}{-4000} =0 $

See similar equations:

| 2,4z+8-0,3z=-17+2z | | 2z=z+79 | | 6,6x2−16=0 | | z+79=2z | | x=25/54 | | (x-1)+2=2(x+2) | | 25t2+30t+9=0 | | n=14=25 | | 17-(2-8x)=72 | | 4t2+32t+64=0 | | 17-{2-8x}=72 | | x1=−6;x2=−13 | | 6x+12=3x-63 | | 17-2-8x=72 | | (2x-4)/4=5 | | 2x+4(3-2x)=3(2x+2)6+4 | | (3x+2)/5=2x | | 190=x12,5/100 | | 4x+6x+3x+5x=5-7+9+11 | | x=25-5(3x) | | 18x+6-7x=72 | | 5-12k+21+15=0 | | 67w=28w= | | 10(8x+11)=4x+3 | | 16x-73-8x=7 | | 6*8-9x=-11x+134 | | x+x-14+2(x-14)=50 | | 120+4*(5x-5)+12=272 | | 15*(x+4)-45=210 | | 3(t-42)=7t-4(t+18) | | 53/2+x=2x= | | X•x=6x-9 |

Equations solver categories