-11/6x-2/3x=83/14

Simple and best practice solution for -11/6x-2/3x=83/14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -11/6x-2/3x=83/14 equation:



-11/6x-2/3x=83/14
We move all terms to the left:
-11/6x-2/3x-(83/14)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-11/6x-2/3x-(+83/14)=0
We get rid of parentheses
-11/6x-2/3x-83/14=0
We calculate fractions
(-4482x^2)/252x^2+(-462x)/252x^2+(-168x)/252x^2=0
We multiply all the terms by the denominator
(-4482x^2)+(-462x)+(-168x)=0
We get rid of parentheses
-4482x^2-462x-168x=0
We add all the numbers together, and all the variables
-4482x^2-630x=0
a = -4482; b = -630; c = 0;
Δ = b2-4ac
Δ = -6302-4·(-4482)·0
Δ = 396900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{396900}=630$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-630}{2*-4482}=\frac{0}{-8964} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+630}{2*-4482}=\frac{1260}{-8964} =-35/249 $

See similar equations:

| −3(−5x+2)+x-3=39 | | 6-(3x+4)=7x-8 | | 3n+6-2n=4n-9 | | 10(a-5)=6 | | R(x)=388x-0.7x^2 | | 2(x-3)+4=6-x | | 0.10x+0.25x(x+7)=5.25 | | -3=i/2 | | 3(7n-6)-2(4-7n)=-26 | | 4+3(x–6)=2+5x–6 | | f=9/5(30)+32° | | 2(2x3)=22 | | 5x+5x-34=-170 | | 8x3=24/12 | | 46=-2(8x+2)-(1+x) | | 4x-9=1x+3-5x | | 75-5(2×6)=x | | 3k+2(5-3)=7 | | 7r=18+r | | 18x+24=114x= | | |6x-1|-|x|=9 | | 7p+6=6p+15 | | 7(5+2x)=91 | | -12=3(v-8)-6v | | 2/5=w-1•3/2 | | 3(x+4)+5=x+2x-17 | | -2(4x-5)+6(2x+1)=18 | | 2/5=w-13/2 | | X+5x+5x+10+(5x+10/3)=140 | | 5×9-4(2p-1)=41 | | 7x-8=10x-13 | | 2/5=w-1.3/2 |

Equations solver categories