If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12x-(8x+4)+10x=-2x(x+1)
We move all terms to the left:
-12x-(8x+4)+10x-(-2x(x+1))=0
We add all the numbers together, and all the variables
-2x-(8x+4)-(-2x(x+1))=0
We get rid of parentheses
-2x-8x-(-2x(x+1))-4=0
We calculate terms in parentheses: -(-2x(x+1)), so:We add all the numbers together, and all the variables
-2x(x+1)
We multiply parentheses
-2x^2-2x
Back to the equation:
-(-2x^2-2x)
-(-2x^2-2x)-10x-4=0
We get rid of parentheses
2x^2+2x-10x-4=0
We add all the numbers together, and all the variables
2x^2-8x-4=0
a = 2; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·2·(-4)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{6}}{2*2}=\frac{8-4\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{6}}{2*2}=\frac{8+4\sqrt{6}}{4} $
| 2y/3+1=7y/15+3 | | 2y3+1=7y/15+3 | | 3x+x=154 | | 2y+3/3y+2=4y+5/6y+7 | | 4x+6=-3x-7 | | x2/x=0 | | 7=(x+4)4 | | 4x(2x/3+8=40 | | 2y+5/3=26-y/3 | | x+1/1=x+13/13 | | 3x(4-4x)=0 | | 2x÷5-1÷2=×÷5 | | 21x-6=11x-56 | | (D+4)y=0 | | 3(2-x)-5(x-2)=x-2(3-x) | | 5x-10/2+9-x/6=3 | | 3(2x+1)=3(x-1)-2(x-3) | | 3/7*x^2-60x+1000=0 | | 19-2(1+x)/5=7 | | 5(7+x)/2=7x+10/8 | | 3p-1=1-2p | | 2(3+x)=114-4x | | 16x-16=20-2x | | x+1=13-5x | | 2x+x+14+x+2x−4=58 | | 7x-8x=12-5 | | 9x+8=3x-22 | | 11x-24=12-x | | 5x-20+20x-50+10x-10=0 | | 5(x-4)+10(2x-5)-5x2(x+1)=0 | | X(x-17$-18x=(x-3)(x+16) | | 1.9x+3.6x=2.5x+3 |