If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12x^2+5x+2=0
a = -12; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·(-12)·2
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*-12}=\frac{-16}{-24} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*-12}=\frac{6}{-24} =-1/4 $
| 10x-1=5x-6 | | 8x2+18x-5=0 | | 5(x-1)=(x-1) | | 43x=149=125 | | 2(5-d0=2-4d | | 7x-(4x-11)=36 | | 2b-7-4b=3b+13 | | z-63=-55 | | (2x-4)=(4x-1) | | 2x+(x-2)+54=180 | | d –10– 2d+7=8+d –10– 3d | | 2h=70 | | Y=0.125x+2 | | 0,4x-7+x=1,4-13 | | 2=1+2/3x | | x^2+2x-16=12x | | -j=12 | | 5u+30=-3u-18 | | 2x-9x=-49 | | 9y=y+6 | | x^2-2x-16=12x | | 90+(x+25)+(2x-10)=180 | | -(4x-5)=-7 | | (4+16)^2/4*2=-100x | | -4x-5()=-7 | | -14=-q | | 9x/2-5=31 | | -19=w+-4 | | s+5s-2s=4 | | 1.8x-x=-32 | | d-17=-10 | | (3n2-7n)+(7n2+n=1) |