-13*x+(-7/8x)=-79

Simple and best practice solution for -13*x+(-7/8x)=-79 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -13*x+(-7/8x)=-79 equation:



-13x+(-7/8x)=-79
We move all terms to the left:
-13x+(-7/8x)-(-79)=0
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-13x+(-7/8x)+79=0
We get rid of parentheses
-13x-7/8x+79=0
We multiply all the terms by the denominator
-13x*8x+79*8x-7=0
Wy multiply elements
-104x^2+632x-7=0
a = -104; b = 632; c = -7;
Δ = b2-4ac
Δ = 6322-4·(-104)·(-7)
Δ = 396512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396512}=\sqrt{16*24782}=\sqrt{16}*\sqrt{24782}=4\sqrt{24782}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(632)-4\sqrt{24782}}{2*-104}=\frac{-632-4\sqrt{24782}}{-208} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(632)+4\sqrt{24782}}{2*-104}=\frac{-632+4\sqrt{24782}}{-208} $

See similar equations:

| 2x-1÷3=5x-6÷4 | | -13*x+(-7/8)=-79 | | 2(4-2r))-5=-2(r+5)+8r | | 25-6x=10 | | 5(2x-3)=4x-15+6x | | 40=2/x | | 5(2x-3)=4x-15+6x  | | 5(2x-5)=4x-15+6x | | 3(3+6x)-5=76 | | 10x-9x+18=24 | | (1+3r)5+-5r=85 | | -9x-7=26x-7(5x-7) | | 179=x+146 | | 248-x=72 | | 4(2x-5)=3(6x+2) | | (3x-5)+8=(4x-7) | | 7(-2-4r)=182 | | x-65=117 | | 86+x=123 | | 8x-10+3x+90=180 | | Y^2-16y+64=9 | | 5*x-6=6*x-5 | | y+4=12y-14 | | -8(5-7n)=408 | | 6(x-2)-7=4x+7 | | 165=2x+x+17 | | |3x-19|=1 | | 3a/4-a/5=7/10 | | -2/x+3=-4 | | 9+2/x=10 | | 3-9=(3x+8) | | 3x-12=2x+20 |

Equations solver categories