If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-140=-2(8r+6)r=
We move all terms to the left:
-140-(-2(8r+6)r)=0
We calculate terms in parentheses: -(-2(8r+6)r), so:We get rid of parentheses
-2(8r+6)r
We multiply parentheses
-16r^2-12r
Back to the equation:
-(-16r^2-12r)
16r^2+12r-140=0
a = 16; b = 12; c = -140;
Δ = b2-4ac
Δ = 122-4·16·(-140)
Δ = 9104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9104}=\sqrt{16*569}=\sqrt{16}*\sqrt{569}=4\sqrt{569}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{569}}{2*16}=\frac{-12-4\sqrt{569}}{32} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{569}}{2*16}=\frac{-12+4\sqrt{569}}{32} $
| -3+3j=j+9 | | Y+43=4y+92 | | 2x/18=45/78 | | 2a-17=a | | 13-(2c+2)=(c+2)+3c | | -3.5+n/6.6=-3 | | 10t-14=8t-6 | | 3x-7=3(x+1)+10x+1 | | X2+14x=4 | | (2x+51)=(x-15) | | 8x+6x=24 | | 9s-16=5s | | -8(-11k+9)-8k=8(4k+3) | | 5x-100=4x-77 | | 8u-19=u+2 | | 3-90u=30 | | 8z-32=7z+47 | | 3s-16=5s-46 | | 6x+8=8x+21 | | 3(g-11)=15 | | Y=0.02x+56.93 | | 5x-7=7x-27 | | 5a-11=-56 | | 5-((1/2)n)=21 | | 1q/2=-1q/3 | | t+10/3=-2 | | 4x-x-6=99 | | 8+22=-3(4x-10) | | 40/15x=10/12 | | 57+y=113 | | 15+20=(5x)+(5x) | | 3y=51/2 |