If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-14y^2+10y=0
a = -14; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-14)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-14}=\frac{-20}{-28} =5/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-14}=\frac{0}{-28} =0 $
| 5+9x-3=4x+5-x | | 3x+x-5x=10 | | 2u-6+4(2u+2)=-5(u+2) | | 226=68x | | H=2t^2+10t+2 | | 47=32+.75m | | -16x+13+-20+23=180 | | 2g+12=3g+21 | | x+42=82 | | (x-8)/(2)=(x-4)/(3)+(1)/(6) | | 3(x-4)-7=-3(-2x+3)-9x | | 10+2x-6=-1+3x | | x-0.23x=475.48 | | 4p^2-3p-5=0 | | .035x^2+10.5x=25 | | 16=x/36 | | 7x-63=3x-6 | | x-96=45 | | 5(1+4x)+2x=27 | | (x+16)=(4x-32) | | -5(3x-6)+6x=6(x+8) | | 5.4+0.5x=0.9 | | -6(r+5)+3(6+2r)=-12 | | 102-5/4n=3n | | -2(7n-4)=120 | | 1/2x^2-18=0 | | x-64=132 | | 5x-2(x-6)=4 | | 6a-15+10a=1 | | 1500=v-1000 | | 88=-8(m-4) | | 6s−4=8(2+14s) |