If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15x^2+27=0
a = -15; b = 0; c = +27;
Δ = b2-4ac
Δ = 02-4·(-15)·27
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5}}{2*-15}=\frac{0-18\sqrt{5}}{-30} =-\frac{18\sqrt{5}}{-30} =-\frac{3\sqrt{5}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5}}{2*-15}=\frac{0+18\sqrt{5}}{-30} =\frac{18\sqrt{5}}{-30} =\frac{3\sqrt{5}}{-5} $
| -3-2+2x-10=-15 | | -6x-20=-8 | | 5x+4=-3+28 | | -32x2+30=0 | | 7n-n-4n=8 | | 5/8x+1/3x=86 | | -19b+8b+12b+-4b=-18 | | -3(x+1)=3x-5+2(2x+8) | | 18+6g=-12g+36 | | (5y-4)+(3y)=180 | | 4(7-2x)=12 | | 2²-3x+2.5=(x-3)²+0.5(x-18) | | w=48-5w | | 2(-3x+15)=60 | | -6(-2y+5)-y=7(y-1)-5 | | v+4=-14 | | 26=-3n8 | | -5=x/9=-6 | | 1/3x+8=16 | | 3(u+7)=-3(8u-2)+9u | | 12u=7u+45 | | -2(-8+2x)=-16 | | -14a−-16a−-a+7a+-a=-9 | | 8w+6-2(-4w-2)=4(w-2) | | 5(2x+2=(-20) | | y=3(-6)+5 | | 42w/46=1 | | -r-5r=18 | | 16=1-2x | | -5(-4v+2)-6v=4(v-6)-4 | | 3=2+4/n | | -0.54x+0.34x=5.4 |