-16+6(z-2)=2(z-8)+4z-12

Simple and best practice solution for -16+6(z-2)=2(z-8)+4z-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16+6(z-2)=2(z-8)+4z-12 equation:


Simplifying
-16 + 6(z + -2) = 2(z + -8) + 4z + -12

Reorder the terms:
-16 + 6(-2 + z) = 2(z + -8) + 4z + -12
-16 + (-2 * 6 + z * 6) = 2(z + -8) + 4z + -12
-16 + (-12 + 6z) = 2(z + -8) + 4z + -12

Combine like terms: -16 + -12 = -28
-28 + 6z = 2(z + -8) + 4z + -12

Reorder the terms:
-28 + 6z = 2(-8 + z) + 4z + -12
-28 + 6z = (-8 * 2 + z * 2) + 4z + -12
-28 + 6z = (-16 + 2z) + 4z + -12

Reorder the terms:
-28 + 6z = -16 + -12 + 2z + 4z

Combine like terms: -16 + -12 = -28
-28 + 6z = -28 + 2z + 4z

Combine like terms: 2z + 4z = 6z
-28 + 6z = -28 + 6z

Add '28' to each side of the equation.
-28 + 28 + 6z = -28 + 28 + 6z

Combine like terms: -28 + 28 = 0
0 + 6z = -28 + 28 + 6z
6z = -28 + 28 + 6z

Combine like terms: -28 + 28 = 0
6z = 0 + 6z
6z = 6z

Add '-6z' to each side of the equation.
6z + -6z = 6z + -6z

Combine like terms: 6z + -6z = 0
0 = 6z + -6z

Combine like terms: 6z + -6z = 0
0 = 0

Solving
0 = 0

Couldn't find a variable to solve for.

This equation is an identity, all real numbers are solutions.

See similar equations:

| 12y=132 | | 4y+228=352 | | -(7y+5)-(-6y-6)=-1 | | 20x-2+18x+5x+17x+2=360 | | b=8t(f-s) | | 3x^2+4x+7=0 | | 16(2x-7)=4(8x+4) | | 5x+15+4x-5+x+20=180 | | 4x-0y=20 | | 7+4z-3=8z+9-5z | | 4x-0=20 | | 5(3y-1)-3(2y)=19 | | 9x+11y=4 | | 10(6)+5y=2 | | 2x+8+5x-2=90 | | 4(0)-y=20 | | 4x-y=20 | | 2x^2-3x-3=0 | | 7x-3x=24 | | -4+16-6x=46 | | 20t=-84 | | 3x^2-26=0 | | -8(2b+2)+(17b-2)=0 | | -.5x+.75=.875 | | 4.4q-4.5-3.5q=0.1q-4.1 | | 9x^2+9y^2-12x-24y=5 | | 14x+8-3=13x-3 | | 15x+9=5(3x+2) | | y=-.3333333333x+3 | | Ax+Fy=L | | 8x+4=3(2x+1)-x+8 | | 7(m-9)-6(2m-7)=6(m+8)+4 |

Equations solver categories