If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16+n2=35
We move all terms to the left:
-16+n2-(35)=0
We add all the numbers together, and all the variables
n^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $
| 2(2x+1)-x=26-x | | F(x)=19X | | 9x+3=6x−12+3x | | x^2-16x=30 | | 4(x+2)+14=3(x+3) | | (-10+a)/5=2 | | F(x)=X7/3 | | 8+16-3t+12=6+-42+8 | | -14=-6+b/2 | | |-7a|=35 | | 45=–9f | | 18.3x=1.5 | | 8=3/5x-7 | | 100=50+1.5x | | p+(-14)=-25 | | 4(v-3)-8v=-24 | | -9−3z=-1−4z | | –9−3z=–1−4z | | x=0.6*(x-0.4/0.6) | | 7x=-38 | | T(g)=27.07+50.25 | | -2(-5v+1)=-82 | | 15x-45+5x+25=180 | | 24+6(x)=10 | | s/15=8 | | 24+6(x)=150 | | 2y-4+3y=36 | | 5(3m-4)=16 | | 3+10=-3x+38 | | 169+6=180-8x | | .3-0.3x=0.2x+0.3 | | 2.3y=0.15(2y |