If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16n^2+56n=0
a = -16; b = 56; c = 0;
Δ = b2-4ac
Δ = 562-4·(-16)·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56}{2*-16}=\frac{-112}{-32} =3+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56}{2*-16}=\frac{0}{-32} =0 $
| -180=-5(8+4r) | | 4p^2−p=0. | | f-98.03=12.47 | | 2q+10=0. | | x5-16=9 | | 2^x=x | | 11w-7w=8 | | -33g+57=98g-73 | | 3x+17-2x-20=03x+17=2x+20 | | (70/8)=2t^2-t | | 26-3x=15+8x | | 16(a-6)=-8-8 | | 13=w/3-5 | | 16+x=2(x+2) | | 16/100y=9 | | x+$5.60=$20.00 | | d+$5.60=$20.00 | | 3^(3x-5)=48 | | 50-3x=-20+4x | | 5-3(c-7)=32 | | 7x+(x+20)=132 | | 40=(2x+30) | | 16-2n=-8+4n | | 1.4x−0.9=3.3 | | 4d=3/1 | | 4x=2x=90 | | 12x+21=28x+9 | | 6y+40= | | 15-1/2b=-23 | | 24.8+a=49.67 | | (a-3)=2(a+4) | | 18x=128 |