If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+150t-3=0
a = -16; b = 150; c = -3;
Δ = b2-4ac
Δ = 1502-4·(-16)·(-3)
Δ = 22308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22308}=\sqrt{676*33}=\sqrt{676}*\sqrt{33}=26\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-26\sqrt{33}}{2*-16}=\frac{-150-26\sqrt{33}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+26\sqrt{33}}{2*-16}=\frac{-150+26\sqrt{33}}{-32} $
| 4^y=190 | | 4x+22=11x | | x^2+(x+1)^2=9 | | 7=|2x+3|+7 | | 1/4y-10=16 | | 9/5=1+m=m= | | 12x-6+2x=10x-2 | | 20/2x=10/x+2 | | 6/7=x/12 | | 94=62x+89 | | x-5x+10=9+2x-7 | | 214=6n-19 | | -4x+3(5x+6)=7(2x+1)-3x | | 5x+7(-12)=61 | | 62-10x=-6x+13 | | 1/5(8q-10)=8/5+8 | | 90+90+(2x+4)+3x+-29)=360 | | (2x)^2*(x)/(0.18)^2=9.30x10^-8 | | 4/(x-5)=18 | | 4(3n+3)=7(7n+9)+7 | | 49=7/9(y+4 | | -57x+57=75x+75 | | 2(x+6)+2x=(x+1)+3 | | ,-13+b=-5 | | 2(5x+4)-11=4x+3(2x-1) | | 4t+1+2t-5t=4+4 | | 19-x^2=3 | | 10x-5-2x=10x-2x+2 | | 7=-5t^2+11t+4 | | -7+v=-17 | | (4x+61)=180 | | -5+5x=x+15 |