If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+1600=0
a = -16; b = 0; c = +1600;
Δ = b2-4ac
Δ = 02-4·(-16)·1600
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{102400}=320$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-320}{2*-16}=\frac{-320}{-32} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+320}{2*-16}=\frac{320}{-32} =-10 $
| 8x^2-25+18=0 | | 15x2=x+2 | | 4x(^2)+5x+3=5x+3 | | -9x-41=4(x-7) | | Y=30+0.75(y+-20)+75+60 | | y=30+.75(y-20)+25+60 | | x+x+100=300 | | Y=30+0.75(y+-20)+60+75 | | 38x+21= | | 5(y-8)=-9y+2 | | 4w+8=9(w-3) | | 2(w-5)=5w+2 | | 2.47=x/(0.290-2x) | | (9x-5)-2(4x+4)=-2 | | 4x+4/6=4 | | 6x2+2x-504=0 | | Y=30+0.75(y+-20)+25+60 | | (9x-8)-2(4x+3)=-4 | | 0,5j+3,5=5 | | 21x+20=-15x+12 | | 21x+20=-15+12 | | y/8=5 | | 10/15=x/27 | | 17=6*x-13 | | 17=6*x-16 | | 6=x/5 | | 3x-9=8x+5 | | 2.5x+12.25=5x-3.75 | | 20i+30=170 | | Y=25+0.75(y+-20)+60+130 | | -3x-6=2x-4 | | 25+x÷15+x=0.6 |