If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+18t+5=0
a = -16; b = 18; c = +5;
Δ = b2-4ac
Δ = 182-4·(-16)·5
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{161}}{2*-16}=\frac{-18-2\sqrt{161}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{161}}{2*-16}=\frac{-18+2\sqrt{161}}{-32} $
| 6x-306=16 | | 5x^-10x+5=20 | | 112=n+65 | | 4q=19.48 | | 2m/3+P=1 | | 34+5x=64x=6 | | 74-13x=35x=3 | | 1x+72=82x=10 | | 157+-11x=69x=8 | | 13+5x=33x=4 | | 29+5x=44x=3 | | 71x-213=2840 | | 40-45-48+50=3x | | (2x-5)=(4-3x+4x3) | | +3-1x=5-3x | | 10x1=10 | | 5.x-7=93 | | 5(x+2)=2x+43 | | 2.x+9=21 | | 10x1+10/10=11 | | 36x-324=1080 | | 24x+12=3x+20x+20 | | 2.x=32 | | 25-x=3x-45 | | X³+6x=69 | | 5.3x-6+4=19 | | -3*9b+-12=0 | | 22x+110=594 | | 2x+3=5x-57 | | 27+65f=0 | | 22x+11=594 | | 4.x+3=6 |