If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+31t+3=0
a = -16; b = 31; c = +3;
Δ = b2-4ac
Δ = 312-4·(-16)·3
Δ = 1153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-\sqrt{1153}}{2*-16}=\frac{-31-\sqrt{1153}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+\sqrt{1153}}{2*-16}=\frac{-31+\sqrt{1153}}{-32} $
| $90=$1500•r•2 | | X2+60x-464=0 | | -9.8+(4)/(9)h=3.5 | | 3x-x=x-4+2x | | 5/x+2+6/x+6=16x+12/(x+6)(x+2) | | 3+3x=7x-13 | | 5/x+2+6/x+6=16x+12/x^2+8x+12 | | 3b×7=(b-4)3 | | -5+x=1.5 | | -4+5y=8+-1y | | 16t2+31t-5=0 | | 0=-16t^2+32t+2 | | 2(2n+3)=8(8n+7)+8 | | 12=9*9-6x | | x/8=80 | | X4-x2=0 | | 8=7*4-2x | | 8=6-4x | | 5w^2+38w+48=0 | | 8(x-5)+4=60 | | (x-2)8=(2x-6)3 | | H(x)=2x^2-18x+72 | | h–234=1,192 | | 6x-35=-20 | | 25t/5=30.76t/3 | | 6x^-24=72 | | 3(x+8)=-8(-3-3x) | | 12b^2+36b+27b^2=0 | | 20x2+15x=0 | | 225a=15 | | 3(2x-2)-5(-3-2x)=4x-1+2x | | 1x^2+-5x+-6=0 |