-16x+433(x-1)=-3x(-15x-3)+3=

Simple and best practice solution for -16x+433(x-1)=-3x(-15x-3)+3= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16x+433(x-1)=-3x(-15x-3)+3= equation:



-16x+433(x-1)=-3x(-15x-3)+3=
We move all terms to the left:
-16x+433(x-1)-(-3x(-15x-3)+3)=0
We multiply parentheses
-16x+433x-(-3x(-15x-3)+3)-433=0
We calculate terms in parentheses: -(-3x(-15x-3)+3), so:
-3x(-15x-3)+3
We multiply parentheses
45x^2+9x+3
Back to the equation:
-(45x^2+9x+3)
We add all the numbers together, and all the variables
417x-(45x^2+9x+3)-433=0
We get rid of parentheses
-45x^2+417x-9x-3-433=0
We add all the numbers together, and all the variables
-45x^2+408x-436=0
a = -45; b = 408; c = -436;
Δ = b2-4ac
Δ = 4082-4·(-45)·(-436)
Δ = 87984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{87984}=\sqrt{144*611}=\sqrt{144}*\sqrt{611}=12\sqrt{611}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(408)-12\sqrt{611}}{2*-45}=\frac{-408-12\sqrt{611}}{-90} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(408)+12\sqrt{611}}{2*-45}=\frac{-408+12\sqrt{611}}{-90} $

See similar equations:

| 1000=2^n | | x*x+10=1200 | | 1/8-3b=8 | | –28=4(p−91) | | 7−3m​ =1 | | x+65=125° | | F(0)=4x2-40x+5 | | 5m+5m-3m=35 | | 3/10=m/3 | | 21-5(x+3)= | | -34=12+23x | | s-2/5=1/4 | | s−2/5=1/4 | | 5=2t− | | 1/9=1/d1/18 | | 5=2t−1 | | 1/7=n/6 | | x.x=32 | | 2x-30°=3x+10° | | 3x+80=350 | | m/3=3/10 | | (-4y3-5y+16)+(4y2-y+9)=(−4y3−5y+16)+(4y2−y+9) | | 3n-(10n-15)=12 | | 4/9=c-4/9 | | 3x+7x+…=12x | | -3/2p=-4 | | 5−3t=3t−7 | | 8−7|5x−3|=−55 | | x3+5=-12 | | -2/3p=-4 | | 2/5+a=4/5 | | |5-4/5k|=11 |

Equations solver categories