-16x2+128+5=0

Simple and best practice solution for -16x2+128+5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16x2+128+5=0 equation:



-16x^2+128+5=0
We add all the numbers together, and all the variables
-16x^2+133=0
a = -16; b = 0; c = +133;
Δ = b2-4ac
Δ = 02-4·(-16)·133
Δ = 8512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8512}=\sqrt{64*133}=\sqrt{64}*\sqrt{133}=8\sqrt{133}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{133}}{2*-16}=\frac{0-8\sqrt{133}}{-32} =-\frac{8\sqrt{133}}{-32} =-\frac{\sqrt{133}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{133}}{2*-16}=\frac{0+8\sqrt{133}}{-32} =\frac{8\sqrt{133}}{-32} =\frac{\sqrt{133}}{-4} $

See similar equations:

| 14v-7v+2v=18 | | 9/x=15/6 | | 9j+10j+4j-7j-j=45 | | -4.9x^2+7.5x+8.75=0 | | 3(4x-1)=6(2x-5 | | 2x+2=A+B+C+D | | -4x5=-13x+39 | | -4(h-3)=-7h+9 | | ⅔x+5=2/3x+7 | | 15x+2x+8x-22x=18 | | x3+2x+9=0 | | ⅔x+5=3x+7 | | -22=6x+2 | | 17c-6c-11c+c=15 | | -16x2+16x+480=0 | | 15/3=n/5 | | 5-3x-1=25 | | 524–=8x | | 3x+4x-12=20 | | n/10=8/5 | | 0=x^2-9x-28 | | -1+10-18=-18t+9 | | ⅔x+5=1x+7 | | 135x+750=1492.50 | | 6^(2x)=1/36 | | .6n-7=19 | | 7h+3h-10h+5h=20 | | ⅔x+5=5x+7 | | 1/7k−3=3/7k+3 | | v/2-9=12 | | −14.95=-3.4-3.3y | | x+10=3x+7 |

Equations solver categories