If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+150x+190=0
a = -16; b = 150; c = +190;
Δ = b2-4ac
Δ = 1502-4·(-16)·190
Δ = 34660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34660}=\sqrt{4*8665}=\sqrt{4}*\sqrt{8665}=2\sqrt{8665}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{8665}}{2*-16}=\frac{-150-2\sqrt{8665}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{8665}}{2*-16}=\frac{-150+2\sqrt{8665}}{-32} $
| 4m–2=5m+7 | | 4v^2=12v+5 | | X/2-5=x-4/5 | | 3r^-10r+3=0 | | 5x/2-8=2x | | 16x^2+150x-190=0 | | 3×2x-1=15 | | 9y−7=3y+11 | | 16p+15=15 | | 12=t/3+10 | | 12x=2x-1 | | 0.009+x=1 | | 5a+5=7a–2. | | |2x-1|=3x-4 | | 2x+3x+12=34 | | 2(r+4)=10 | | 3=6/t | | 2(5t-6)=19t+8 | | 4(x-2)+4=4(x-1) | | 5x-3(2x-8)=36 | | 9/6=n/6 | | T-5/3=t-3/5 | | 14–x=8 | | 2n(8n+3)=1 | | 36/n=5/6 | | 5/6=36/n | | 4/9=20n | | 3.925+2t=4.175 | | 3p+5=13-p | | −15+x=−20 | | 170+8p=92+14p | | −2+x=−5 |