If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+64x+50=0
a = -16; b = 64; c = +50;
Δ = b2-4ac
Δ = 642-4·(-16)·50
Δ = 7296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7296}=\sqrt{64*114}=\sqrt{64}*\sqrt{114}=8\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{114}}{2*-16}=\frac{-64-8\sqrt{114}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{114}}{2*-16}=\frac{-64+8\sqrt{114}}{-32} $
| -16x2+64x+80=50 | | 6x+9x+11x=160 | | d4+ 7=11 | | 3x–7=-‐5(x–5) | | 144=-36v | | -99+m=-1 | | -9=u/3 | | 3p=2p=p | | 4x-3+2x+23-x=11+6x+19 | | 1(12)=300p | | -81(4-2y)^4=-16 | | 73=-4(x=2)-3(6x-7) | | j+15=45 | | F(x)=10(1.05)^x | | c-23=32 | | -117=-5(4x-1)-1 | | X²-4.x+4=0 | | 56=-4m | | 4y2–19y+12=0 | | -5(9-7x)=-80 | | 16.3x^2-150x=180 | | 16.5x^2-150x=180 | | -5(5x-9)=-155 | | 2-4.5x=1.1 | | -4=5+m | | -2(-6+5x)=-98 | | 4x(x-8)=-36 | | 5(1-1x)=5 | | -7x+3=123+3x | | 43=7-9u(-8) | | A=6x+18=6×x+6×3=6(x+3) | | 2(x-3)=-5x+1 |