-18=15z-9z(2z-2)

Simple and best practice solution for -18=15z-9z(2z-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -18=15z-9z(2z-2) equation:



-18=15z-9z(2z-2)
We move all terms to the left:
-18-(15z-9z(2z-2))=0
We calculate terms in parentheses: -(15z-9z(2z-2)), so:
15z-9z(2z-2)
We multiply parentheses
-18z^2+15z+18z
We add all the numbers together, and all the variables
-18z^2+33z
Back to the equation:
-(-18z^2+33z)
We get rid of parentheses
18z^2-33z-18=0
a = 18; b = -33; c = -18;
Δ = b2-4ac
Δ = -332-4·18·(-18)
Δ = 2385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2385}=\sqrt{9*265}=\sqrt{9}*\sqrt{265}=3\sqrt{265}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{265}}{2*18}=\frac{33-3\sqrt{265}}{36} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{265}}{2*18}=\frac{33+3\sqrt{265}}{36} $

See similar equations:

| 2(5v+3)-47v+1=-88 | | -3k=3.03 | | 3x-9/2=12 | | v+7/12+10=6v/10= | | h-12.5=7.5 | | 4y-10+60=180 | | -7x=14-(5x+6) | | |3x+1|=9+x | | x^+6x-342=0 | | -3(-3x-1)+2=27-2x | | 11z=396 | | 2=26−3x | | u/10=22 | | t+335=369 | | 9x-15/5=6 | | (88-16)/(18+6)=y | | c/20=20 | | -j=-100 | | (2x-2)+(8x+7)=90 | | (3x+3)+(2x-1)=11 | | 83^x=27 | | 2j=9.4 | | -4+2r=2 | | 42=-3(a+1) | | 2-(2y+9)=50 | | 5x-15=10x-24 | | -6x-4(3-8x)+14=12(-x-11.5)-4x | | 1.5y-11=-5 | | -(23a-13)+53a=-4. | | (97-25)/(41-23)=k | | 3x−3=4x−6 | | 130=10-8x |

Equations solver categories