If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1=-9t^2
We move all terms to the left:
-1-(-9t^2)=0
We get rid of parentheses
9t^2-1=0
a = 9; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·9·(-1)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*9}=\frac{-6}{18} =-1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*9}=\frac{6}{18} =1/3 $
| 1/2(2-4x)+2x2=13 | | -1=-8u2 | | 2t2+2=t | | 6z+3=-3z2 | | 6y2=7 | | 8t2+4t=-5 | | 7t2+9=0 | | 8p2+9=0 | | 5(4x+10)+5(2x-5)=5(x-90) | | 3t2–9t+8=0 | | 1-1x=13 | | 2c-3(c-4=c+2 | | 4s2+4s+1=0 | | 7z2–6z+5=0 | | x=10.75+2x | | 2s2+8s+7=0 | | 8v2–7v+6=0 | | 55.16x+11.65=2.26x-180 | | 5u2+5u+8=0 | | q2+4q+4=0 | | 5r2–6r–9=0 | | 6(3-x)=2x+15 | | -4x+2(3x-2)=46 | | -26x=-12 | | 10x-16+x-19+4x+20=180+5x | | y2+11y+28=0 | | 10x-16+x-19+4x+20=180=5x | | (2x)(2x)+8x-1=0 | | -5(3x-15)=2(x-46)-3 | | 1/4x+5/2x=4-1/4x | | a^2+100=196 | | 3.2+5.7=-2.5x |