If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1y^2+6-1=0
We add all the numbers together, and all the variables
-1y^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $
| 3/5m+1/2m-4=7/10m | | 4x+1=6.5 | | -20.4=-0.6x | | 4d-9d=8d | | x+2=-14+x | | 3x+10=9x-26* | | 5x+5/2=8x+6/3 | | 144/x=8 | | x–6=-24 | | -5q=-6q-9 | | 8y-2=-7y+28 | | 9x2+392=0 | | 12j-9j=12 | | n=-4n+15 | | 14q+-3q=11 | | -2+2q=-18 | | 19c=-3+20c | | -(k+7)=-13 | | 9(x-5)=12x+63 | | 5x-8=7×+10 | | 9x+6x+8=41 | | t-8/3=2 | | 5y3−39y2−8y=0 | | -10b=-9b+3 | | -14s+20=-19-18s+3 | | 14s+20=-19-18s+3 | | -14+20=-19-18s+3 | | 7x-14=24 | | 4.37(4x)+3.42x=62.70 | | 3j-11=5j+17 | | f(5)=-48 | | 4.37(4x)+3.42(x)=62.70 |