-2(3x+7)=-3(2x+8);x=-5

Simple and best practice solution for -2(3x+7)=-3(2x+8);x=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(3x+7)=-3(2x+8);x=-5 equation:



-2(3x+7)=-3(2x+8)x=-5
We move all terms to the left:
-2(3x+7)-(-3(2x+8)x)=0
We multiply parentheses
-6x-(-3(2x+8)x)-14=0
We calculate terms in parentheses: -(-3(2x+8)x), so:
-3(2x+8)x
We multiply parentheses
-6x^2-24x
Back to the equation:
-(-6x^2-24x)
We get rid of parentheses
6x^2+24x-6x-14=0
We add all the numbers together, and all the variables
6x^2+18x-14=0
a = 6; b = 18; c = -14;
Δ = b2-4ac
Δ = 182-4·6·(-14)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{165}}{2*6}=\frac{-18-2\sqrt{165}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{165}}{2*6}=\frac{-18+2\sqrt{165}}{12} $

See similar equations:

| 35×x=x×35 | | 4/2x-11=-7 | | x-2,4=8 | | -2/3x2–4/3x+2=0 | | a/4+6=13 | | Y=3000-(200+0.4y)-1000 | | 3(2y–3)=27 | | 1,3x-5,2=2,6x | | -2/3x^2–4/3x+2=0 | | 2h2+11h+12=0 | | x2+10x+75=0 | | 10/9x-12=-2 | | 0=-2/3x^2–4/3x+2 | | -2p^2+24p=0 | |  24-3m=5m  | | 8k-2k+4=10 | | 8x^2×26x-7=0 | | y2=81 | | v2=47 | | 1/(x+5)=1/2(x+5)+3/2 | | 7+5x-3x=11+3x-3x | | 3(2x+5)-4=25 | | F(x)=7+3(x-1) | | (x2+6x-7)(2x2-5x-3)= | | 8x^2x26x-7=0 | | 3t^2-4t=4 | | z2=1 | | u/5-8=25 | | 8n+9=−n | | (x2+6x-7)(2x2-5x-3)=0 | | 3=1+x-6 | | 7x-8=10+5x |

Equations solver categories