-2(3x+7)=-3(2x+8)x=-5

Simple and best practice solution for -2(3x+7)=-3(2x+8)x=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(3x+7)=-3(2x+8)x=-5 equation:



-2(3x+7)=-3(2x+8)x=-5
We move all terms to the left:
-2(3x+7)-(-3(2x+8)x)=0
We multiply parentheses
-6x-(-3(2x+8)x)-14=0
We calculate terms in parentheses: -(-3(2x+8)x), so:
-3(2x+8)x
We multiply parentheses
-6x^2-24x
Back to the equation:
-(-6x^2-24x)
We get rid of parentheses
6x^2+24x-6x-14=0
We add all the numbers together, and all the variables
6x^2+18x-14=0
a = 6; b = 18; c = -14;
Δ = b2-4ac
Δ = 182-4·6·(-14)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{165}}{2*6}=\frac{-18-2\sqrt{165}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{165}}{2*6}=\frac{-18+2\sqrt{165}}{12} $

See similar equations:

| 3.5=q+76 | | 16=q/3+9 | | 8x-20-6x+2=5 | | 8x-3(2x+3)=55 | | 7(y-87)=42 | | 9x+10=3x-x | | 124=6x | | b/2-1=9 | | 5g+7=97 | | 123456789*87654321=4x | | 3=z+79 | | s-90=-6 | | w+31/8=8 | | 48=k+34 | | w+318= 8 | | 4x-4x-4x-4x*200=10*20 | | 3x+8x-4x=4+3 | | 3k-53=34 | | 4^(5)=4x-20 | | 10^2-24x=0 | | 35=b-38 | | 5/4x-2=-1/4x19 | | 4(x+1)=10(2) | | 4+2(x-4)+1=4x+7 | | x+x(x+5)=162 | | 3+3f=15 | | 28x+2=56 | | 25x+8=108 | | 3=2c-7 | | 14x+2=26 | | 5(f-94)=10 | | 2(p-53)=76 |

Equations solver categories