-2(45-2x)x-2(24-2x)+(24-2x)(45-2x)=0

Simple and best practice solution for -2(45-2x)x-2(24-2x)+(24-2x)(45-2x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(45-2x)x-2(24-2x)+(24-2x)(45-2x)=0 equation:



-2(45-2x)x-2(24-2x)+(24-2x)(45-2x)=0
We add all the numbers together, and all the variables
-2(-2x+45)x-2(-2x+24)+(-2x+24)(-2x+45)=0
We multiply parentheses
4x^2-90x+4x+(-2x+24)(-2x+45)-48=0
We multiply parentheses ..
4x^2+(+4x^2-90x-48x+1080)-90x+4x-48=0
We add all the numbers together, and all the variables
4x^2+(+4x^2-90x-48x+1080)-86x-48=0
We get rid of parentheses
4x^2+4x^2-90x-48x-86x+1080-48=0
We add all the numbers together, and all the variables
8x^2-224x+1032=0
a = 8; b = -224; c = +1032;
Δ = b2-4ac
Δ = -2242-4·8·1032
Δ = 17152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17152}=\sqrt{256*67}=\sqrt{256}*\sqrt{67}=16\sqrt{67}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-224)-16\sqrt{67}}{2*8}=\frac{224-16\sqrt{67}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-224)+16\sqrt{67}}{2*8}=\frac{224+16\sqrt{67}}{16} $

See similar equations:

| -3^2(m+2)=10(3-m) | | Y=250x4 | | 100=t/0.5 | | 2^2x-1=64 | | 4n-36=148 | | 0.06b=6 | | y+77=180 | | -11=m-4,m^2+m | | N/4=3,n^2-1 | | 9n-7=30 | | 75+x+15=180 | | x⁴+3x+20=0 | | 5+x+15=180 | | 9(4+v)+38v=10v | | 7(x-3)=-2x+42 | | -4(5-3b)=6b+4 | | 36-8x=x | | 0.36*2x=27 | | 3v+8=7v | | x-(2x-3)=90 | | a=8.1-2.8 | | 43=4v-9 | | (2x-3)-x=90 | | z=1-3 | | x/3-2=2x+8 | | 3^n=3^15·3^4 | | 1/4(3x+39)=4x | | e=1.5*8- | | 3n=3^15·3^4 | | x/3-x+5/7=4 | | 21+30y=30y-30 | | -6x+16=-4x+24 |

Equations solver categories