-2(45-2x)x-2(24-2x)x+(24-2x)(45-2x)=0

Simple and best practice solution for -2(45-2x)x-2(24-2x)x+(24-2x)(45-2x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(45-2x)x-2(24-2x)x+(24-2x)(45-2x)=0 equation:



-2(45-2x)x-2(24-2x)x+(24-2x)(45-2x)=0
We add all the numbers together, and all the variables
-2(-2x+45)x-2(-2x+24)x+(-2x+24)(-2x+45)=0
We multiply parentheses
4x^2+4x^2-90x-48x+(-2x+24)(-2x+45)=0
We multiply parentheses ..
4x^2+4x^2+(+4x^2-90x-48x+1080)-90x-48x=0
We add all the numbers together, and all the variables
8x^2+(+4x^2-90x-48x+1080)-138x=0
We get rid of parentheses
8x^2+4x^2-90x-48x-138x+1080=0
We add all the numbers together, and all the variables
12x^2-276x+1080=0
a = 12; b = -276; c = +1080;
Δ = b2-4ac
Δ = -2762-4·12·1080
Δ = 24336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{24336}=156$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-276)-156}{2*12}=\frac{120}{24} =5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-276)+156}{2*12}=\frac{432}{24} =18 $

See similar equations:

| (4x-2)+(3x+8)=180 | | 6k^2-5k=6 | | 4x(x-5)=80 | | 5k-(6+k)=-(4K+6) | | 2^1-x^2=1/256 | | 300=25x+10x | | -7(x-3)=-5(x-3)-2 | | (5x-17)+(2x+50)=180 | | 73=y=9 | | -2(45-2x)x-2(24-2x)+(24-2x)(45-2x)=0 | | -3^2(m+2)=10(3-m) | | Y=250x4 | | 100=t/0.5 | | 2^2x-1=64 | | 4n-36=148 | | 0.06b=6 | | y+77=180 | | -11=m-4,m^2+m | | N/4=3,n^2-1 | | 9n-7=30 | | 75+x+15=180 | | x⁴+3x+20=0 | | 5+x+15=180 | | 9(4+v)+38v=10v | | 7(x-3)=-2x+42 | | -4(5-3b)=6b+4 | | 36-8x=x | | 0.36*2x=27 | | 3v+8=7v | | x-(2x-3)=90 | | a=8.1-2.8 | | 43=4v-9 |

Equations solver categories