-2(5x-1)=-4x(x+5)

Simple and best practice solution for -2(5x-1)=-4x(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(5x-1)=-4x(x+5) equation:



-2(5x-1)=-4x(x+5)
We move all terms to the left:
-2(5x-1)-(-4x(x+5))=0
We multiply parentheses
-10x-(-4x(x+5))+2=0
We calculate terms in parentheses: -(-4x(x+5)), so:
-4x(x+5)
We multiply parentheses
-4x^2-20x
Back to the equation:
-(-4x^2-20x)
We get rid of parentheses
4x^2+20x-10x+2=0
We add all the numbers together, and all the variables
4x^2+10x+2=0
a = 4; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·4·2
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{17}}{2*4}=\frac{-10-2\sqrt{17}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{17}}{2*4}=\frac{-10+2\sqrt{17}}{8} $

See similar equations:

| 5x+8x-9=-6(x-3) | | 4x+10x-12=-3x-39 | | -8g+8=-9g | | -+3x=8 | | y=235(1.017)^(3) | | 7x+4-2x-5=5-x+4x+7 | | x+3/4=7.5 | | 7=-v+4 | | 2n+14=-9 | | 5+14a-5a=5 | | 21x+31=29x-1 | | 2n=14=-9 | | -8-5c=-6c | | 1=2/o | | a2–2a–8=0 | | x^2+5x-35=3xx2+5x−35=3x | | y=235(1.17)^(3) | | 40+4x+180-x=180 | | -t+6=-2t+14 | | 180-93=3x+18 | | 60+x=2x=+4 | | 3^k-2=75 | | 12x+8-2(2x+3)=4x-6(x+1)+5x | | 11x-5)=(5x-13) | | -9x-18=33 | | 8x−8=34−6x | | 49-6x=(1/64)10/13 | | X(x+2x)=8(8+x+4) | | 94=29x-1 | | f/6−3=1 | | x-2(2-3x)=9+5(3x-1)= | | 8+x=16A |

Equations solver categories