If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2(6a-1)=-(5/3)(3a+15)+6
We move all terms to the left:
-2(6a-1)-(-(5/3)(3a+15)+6)=0
Domain of the equation: 3)(3a+15)+6)!=0We add all the numbers together, and all the variables
a∈R
-2(6a-1)-(-(+5/3)(3a+15)+6)=0
We multiply parentheses
-12a-(-(+5/3)(3a+15)+6)+2=0
We multiply parentheses ..
-(-(+15a^2+5/3*15)+6)-12a+2=0
We multiply all the terms by the denominator
-(-(+15a^2+5-12a*3*15)+6)+2*3*15)+6)=0
We calculate terms in parentheses: -(-(+15a^2+5-12a*3*15)+6), so:We add all the numbers together, and all the variables
-(+15a^2+5-12a*3*15)+6
We get rid of parentheses
-15a^2+12a*3*15-5+6
We add all the numbers together, and all the variables
-15a^2+12a*3*15+1
Wy multiply elements
-15a^2+540a*1+1
Wy multiply elements
-15a^2+540a+1
Back to the equation:
-(-15a^2+540a+1)
-(-15a^2+540a+1)=0
We get rid of parentheses
15a^2-540a-1=0
a = 15; b = -540; c = -1;
Δ = b2-4ac
Δ = -5402-4·15·(-1)
Δ = 291660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{291660}=\sqrt{4*72915}=\sqrt{4}*\sqrt{72915}=2\sqrt{72915}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-2\sqrt{72915}}{2*15}=\frac{540-2\sqrt{72915}}{30} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+2\sqrt{72915}}{2*15}=\frac{540+2\sqrt{72915}}{30} $
| 19+3y-2=13y-4y | | 1/7x=4/12 | | 9u-65=6u-38 | | x²+19x+88=0 | | 12-6(x-7)=3x+3(x+4) | | B^+3b-4=0 | | n+8+3n=20 | | X×y=259 | | 126x2-504x=0 | | 1/5(d+3.5)=-2.4 | | 5+3(4x+7)=62 | | X+1÷x-1=x-1÷x-2 | | 5+3(4x+7=62 | | 9.1+0.2x=15 | | (8+2x)5=4x+10 | | 5x+8x-2x-5=39 | | 4(x+5=36 | | 435/12x11= | | 53-4x=5 | | -7(2x-5)+5(3x-3)-9=6-5 | | 3(4+-a)=2(6+a) | | 5x+2x=58-9 | | 1/3(7x-1)=2x+3 | | 12x²+17x=5 | | 4x+3x+3=48 | | 9x+8x+4x-5=34 | | 12x²+18x=x+5 | | 6(m+5=18 | | x+2x-1+0.5x=51.50 | | m÷8-16=-52 | | 3x+48=5x+2 | | 2/3x=9/7 |