If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2(6a-1)=-(5/3)(a+15)+6
We move all terms to the left:
-2(6a-1)-(-(5/3)(a+15)+6)=0
Domain of the equation: 3)(a+15)+6)!=0We add all the numbers together, and all the variables
a∈R
-2(6a-1)-(-(+5/3)(a+15)+6)=0
We multiply parentheses
-12a-(-(+5/3)(a+15)+6)+2=0
We multiply parentheses ..
-(-(+5a^2+5/3*15)+6)-12a+2=0
We multiply all the terms by the denominator
-(-(+5a^2+5-12a*3*15)+6)+2*3*15)+6)=0
We calculate terms in parentheses: -(-(+5a^2+5-12a*3*15)+6), so:We add all the numbers together, and all the variables
-(+5a^2+5-12a*3*15)+6
We get rid of parentheses
-5a^2+12a*3*15-5+6
We add all the numbers together, and all the variables
-5a^2+12a*3*15+1
Wy multiply elements
-5a^2+540a*1+1
Wy multiply elements
-5a^2+540a+1
Back to the equation:
-(-5a^2+540a+1)
-(-5a^2+540a+1)=0
We get rid of parentheses
5a^2-540a-1=0
a = 5; b = -540; c = -1;
Δ = b2-4ac
Δ = -5402-4·5·(-1)
Δ = 291620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{291620}=\sqrt{4*72905}=\sqrt{4}*\sqrt{72905}=2\sqrt{72905}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-2\sqrt{72905}}{2*5}=\frac{540-2\sqrt{72905}}{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+2\sqrt{72905}}{2*5}=\frac{540+2\sqrt{72905}}{10} $
| 31/2=1/2+6x | | 4(x-3)-8=(-9x+4-5x | | 10(v+3)=100 | | 3(y-2)-7y=-18 | | 4(n+5)=52 | | 3+1.1(10x+9)=1-(-x-6.4) | | n/4-(-15=21) | | 5(f+3)=60 | | s/5+57=66 | | 7w+5(w+7)=-37 | | 8x-5=12x-9 | | x/x=7.9625 | | v/3+12=15 | | 6=3+4x | | 8x-46=5(x-5) | | 7=1/2x=1 | | n4−-15=21 | | 21+3w=84 | | -4(-1-3x)=-92 | | x-13/6=3 | | 19=2h+3 | | 16+2.4p=22.5 | | y=1.05(0.975) | | 8-9x=6x+19 | | x-75=90 | | 5x+12=2(2x-3)-6 | | h+4=-9 | | 26−-2q=90 | | 3x=+20 | | 9(d+3)=45 | | -40=5-9f | | 8x-26=23+x |