-2(6x+1)=-11x(x-2)

Simple and best practice solution for -2(6x+1)=-11x(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(6x+1)=-11x(x-2) equation:



-2(6x+1)=-11x(x-2)
We move all terms to the left:
-2(6x+1)-(-11x(x-2))=0
We multiply parentheses
-12x-(-11x(x-2))-2=0
We calculate terms in parentheses: -(-11x(x-2)), so:
-11x(x-2)
We multiply parentheses
-11x^2+22x
Back to the equation:
-(-11x^2+22x)
We get rid of parentheses
11x^2-22x-12x-2=0
We add all the numbers together, and all the variables
11x^2-34x-2=0
a = 11; b = -34; c = -2;
Δ = b2-4ac
Δ = -342-4·11·(-2)
Δ = 1244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1244}=\sqrt{4*311}=\sqrt{4}*\sqrt{311}=2\sqrt{311}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{311}}{2*11}=\frac{34-2\sqrt{311}}{22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{311}}{2*11}=\frac{34+2\sqrt{311}}{22} $

See similar equations:

| 5(x-5)=5(2-x) | | 6(3x-7)=-2+8(2x-5) | | 2-2x=-2(x-1 | | 2(x+7)+10x=17 | | 8(v+5)=-6v-44 | | =12+-3x+-1x2 | | 34(4x–8)=18 | | 9x-10=5x+9 | | =+6−x212−3x5 | | 2x+12=11x+32 | | 66=h+3-8h | | 25x=120-5x-7 | | 2x+x-17=7 | | 4(x-2)=-9x-34 | | -4(x-15)=48 | | 2/5w+6=18 | | 3r^2-5=-32 | | 7(5x-1)-6(4x)=37 | | 3x7−1=1 | | 12x-5=3(2x+3 | | 6z-15-z+5=10 | | 52=6y+4 | | w/4=42 | | 17-x(x-3)=-66 | | 4x-18+1=-9 | | 45=3u+15 | | -1/4x=11 | | -2p+15=11 | | -3m=63 | | 41=|x-6|+18 | | 18=-4t-2 | | 12=6+y |

Equations solver categories