-2(9r+3)-7r=-10r(12r+9)

Simple and best practice solution for -2(9r+3)-7r=-10r(12r+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(9r+3)-7r=-10r(12r+9) equation:



-2(9r+3)-7r=-10r(12r+9)
We move all terms to the left:
-2(9r+3)-7r-(-10r(12r+9))=0
We add all the numbers together, and all the variables
-7r-2(9r+3)-(-10r(12r+9))=0
We multiply parentheses
-7r-18r-(-10r(12r+9))-6=0
We calculate terms in parentheses: -(-10r(12r+9)), so:
-10r(12r+9)
We multiply parentheses
-120r^2-90r
Back to the equation:
-(-120r^2-90r)
We add all the numbers together, and all the variables
-(-120r^2-90r)-25r-6=0
We get rid of parentheses
120r^2+90r-25r-6=0
We add all the numbers together, and all the variables
120r^2+65r-6=0
a = 120; b = 65; c = -6;
Δ = b2-4ac
Δ = 652-4·120·(-6)
Δ = 7105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7105}=\sqrt{49*145}=\sqrt{49}*\sqrt{145}=7\sqrt{145}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-7\sqrt{145}}{2*120}=\frac{-65-7\sqrt{145}}{240} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+7\sqrt{145}}{2*120}=\frac{-65+7\sqrt{145}}{240} $

See similar equations:

| x/2x=-6.2 | | 4w-2/3=-7/5w-4/5 | | 80/m=6 | | 10=4+3q | | x²-7x+15=0 | | 2x²-9x+16=0 | | d−2=−2+d | | 3(5x+4)=9x-2 | | (5x+10)=(6x+10) | | (5x+10)=(6x*10) | | 2/5x-6=4/10x+8 | | 5+x-14=18 | | –5r=–3r+6 | | 9540=(x-2)(180) | | q−52=2 | | X/6-3x=2/9 | | G(5)=5x-12 | | 1/6z+20=21 | | m/3+9=20 | | -9x-42=4(x+9) | | –6t=10−6t | | 12=-8+6(y-5) | | 2.5x+35=5x | | 12=-8y+6(y-5 | | 6b-15=-33 | | –4−5s=–5s+2 | | -22+y/5=-11 | | 4.2-x/(2x)=-2 | | -10z+7=57 | | (3w)(2=) | | 6y-14=15 | | 5x5+5x1=30 |

Equations solver categories