-2(x+6)+3=-11x(x+4)

Simple and best practice solution for -2(x+6)+3=-11x(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(x+6)+3=-11x(x+4) equation:



-2(x+6)+3=-11x(x+4)
We move all terms to the left:
-2(x+6)+3-(-11x(x+4))=0
We multiply parentheses
-2x-(-11x(x+4))-12+3=0
We calculate terms in parentheses: -(-11x(x+4)), so:
-11x(x+4)
We multiply parentheses
-11x^2-44x
Back to the equation:
-(-11x^2-44x)
We add all the numbers together, and all the variables
-(-11x^2-44x)-2x-9=0
We get rid of parentheses
11x^2+44x-2x-9=0
We add all the numbers together, and all the variables
11x^2+42x-9=0
a = 11; b = 42; c = -9;
Δ = b2-4ac
Δ = 422-4·11·(-9)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-12\sqrt{15}}{2*11}=\frac{-42-12\sqrt{15}}{22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+12\sqrt{15}}{2*11}=\frac{-42+12\sqrt{15}}{22} $

See similar equations:

| 3x+15=4x-4 | | (x+11)/(x+5)=x/(x+5) | | 6x+40=12 | | 19a-7-3a=12 | | R2-11r+24=0 | | 2x−3(2x−1)=2(x−1)−x | | x/3+22=42 | | 2c+(3c–4)=-4c—4 | | 60+4y=12 | | x/4+16=36 | | y÷5=7 | | 6x-1=5x-13 | | -2m2-6=0 | | -9+-6x=4 | | 4x-9=7x-18 | | 6x+23=41 | | 2x-60=18 | | 3x+53=59 | | 10x+45=75 | | x/2+12=39 | | 2x+62=70 | | 20-6y=18 | | 9x+30=66 | | 2g−1=3 | | 11x-36=19 | | 180=10x+5x-17+7x-1 | | x/2-29=8 | | x/75+18=18 | | 7x+34+10x-23=180 | | 4x+30=100=30 | | 11x-25=52 | | 2x+40=52 |

Equations solver categories