-2(x-6)=4(3-1/2x)

Simple and best practice solution for -2(x-6)=4(3-1/2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(x-6)=4(3-1/2x) equation:



-2(x-6)=4(3-1/2x)
We move all terms to the left:
-2(x-6)-(4(3-1/2x))=0
Domain of the equation: 2x))!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-2(x-6)-(4(-1/2x+3))=0
We multiply parentheses
-2x-(4(-1/2x+3))+12=0
We multiply all the terms by the denominator
-2x*2x+12*2x-1+3))-(4(+3))=0
We add all the numbers together, and all the variables
-2x*2x+12*2x-1+3))-(43)=0
We add all the numbers together, and all the variables
-2x*2x+12*2x=0
Wy multiply elements
-4x^2+24x=0
a = -4; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-4)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-4}=\frac{-48}{-8} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-4}=\frac{0}{-8} =0 $

See similar equations:

| T(t^2+2t)=0 | | 3w+21-5w=15 | | 13y–15(-7y+15)=-343 | | 16-2(4x+6)=44 | | 2x–4=6 | | 1e-3e=6 | | 2(4x+2)=(x-1) | | 4b–3=1 | | 0.16(10,000)-0.08y=0.02(y+10,000) | | 3(x-5)+8=43 | | (3x-5)^2-81=0 | | 0=3w-9-2w | | 117=-9(5x+17) | | -8v+5v-30=-18 | | 0.007(x+2)=0.008+0.009 | | 5+6x=2+5x-5 | | 9+2x–6=-9x–11–5x | | 2x-75+x=90 | | 4(6x-3)=-108 | | n+-5=-7/12 | | 5y+9=-7-8y-13 | | 0.16x+0.07(x+2000)=1750 | | 8x-42=3x+12 | | 2x^-7x-15=0 | | 10-(2n-6)=2-3n | | 8v+16=-2+4 | | x/3=6/10 | | x-11=x^2÷2-13 | | 18=3x-6x | | 7-x=3x+21 | | 5-3(2x-4)=46 | | 35W+55-10w=28w+75-5w+12=50w+25 |

Equations solver categories