-2+(2/3)w=10

Simple and best practice solution for -2+(2/3)w=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2+(2/3)w=10 equation:



-2+(2/3)w=10
We move all terms to the left:
-2+(2/3)w-(10)=0
Domain of the equation: 3)w!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
(+2/3)w-2-10=0
We add all the numbers together, and all the variables
(+2/3)w-12=0
We multiply parentheses
2w^2-12=0
a = 2; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·2·(-12)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*2}=\frac{0-4\sqrt{6}}{4} =-\frac{4\sqrt{6}}{4} =-\sqrt{6} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*2}=\frac{0+4\sqrt{6}}{4} =\frac{4\sqrt{6}}{4} =\sqrt{6} $

See similar equations:

| y-2.8=13.3 | | -18m=24 | | -4.8=m+12.2 | | 5^​−x​​=​1/54 | | 1x=-13x+34 | | 3(n-1)=2n+6(1-n) | | 2=5-x/4-3 | | x-2(5/6)=-2 | | -2(5-6x)=2x-18 | | 46=35+w | | x+5.2=8.7 | | 3(n-2)=-4n+6(1-n) | | 71+10x+6+13x-2+8x-1=360 | | 10*x=16 | | u+22=32 | | 360=71+10x+6+13x-2+8x-1 | | 3a+2=26 | | s+7s=16 | | 5÷12(k-2)+1÷4(3k-4)=k+7÷2 | | 39=48-y | | 45−8x=8x−6, | | 9=w-14= | | X+40=180-x | | 7+a/3=-5 | | 4x(9+6)=4 | | 3n-8=-4+5n | | 6(v+1)=-5v-16 | | E^3x-1=17 | | 2(4+7x)-3(8x-1)=0 | | 2/3x-18=34 | | -4/7z=-8 | | 2(4+7x)-3(8x-1)=x |

Equations solver categories