-2+(2/3)x=8

Simple and best practice solution for -2+(2/3)x=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2+(2/3)x=8 equation:



-2+(2/3)x=8
We move all terms to the left:
-2+(2/3)x-(8)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-2-8=0
We add all the numbers together, and all the variables
(+2/3)x-10=0
We multiply parentheses
2x^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $

See similar equations:

| 2(x-12)^2-7=2x^2-12x+7 | | k/7+54=60 | | 4(g-74)=64 | | y-62/5=4 | | 9x2+22.0077x=8x2−119.99 | | 5x2+43x+24=0 | | 9x2+22.0077x=8x2−119.99. | | (6+4)+4+6(-8)=x | | 24=z/2+17 | | z/6+44=54 | | p/4-1=4 | | 5(u+3)=85 | | 53=f/9+49 | | 3(j-78)=12 | | 4(g–74)=64 | | 53=f/949 | | 11+2k=19 | | -6/5x=-1 | | 4x+2/5=3x+5/2 | | -3h+12=-69 | | 2x+2=-3x+47 | | x^{3}-64x=5x²-320 | | 28+4v=88 | | -2(x-12)+1=-2x+25 | | 2c=(3c-4)=5c-4 | | -7x+3=-x+45 | | 9(x+3)=−72 | | 5m+5=35m= | | F(x+2)=4x^2+4x-4 | | (2x+5)3x-2=3x | | 9x-3/6=4 | | w/8-1=2 |

Equations solver categories