-2-3/4k=1/8k+4

Simple and best practice solution for -2-3/4k=1/8k+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2-3/4k=1/8k+4 equation:



-2-3/4k=1/8k+4
We move all terms to the left:
-2-3/4k-(1/8k+4)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 8k+4)!=0
k∈R
We get rid of parentheses
-3/4k-1/8k-4-2=0
We calculate fractions
(-24k)/32k^2+(-4k)/32k^2-4-2=0
We add all the numbers together, and all the variables
(-24k)/32k^2+(-4k)/32k^2-6=0
We multiply all the terms by the denominator
(-24k)+(-4k)-6*32k^2=0
Wy multiply elements
-192k^2+(-24k)+(-4k)=0
We get rid of parentheses
-192k^2-24k-4k=0
We add all the numbers together, and all the variables
-192k^2-28k=0
a = -192; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·(-192)·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*-192}=\frac{0}{-384} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*-192}=\frac{56}{-384} =-7/48 $

See similar equations:

| 3/4=n/40 | | x=500x150 | | 4d−8=4 | | 408/17=d | | 4x+4+(4x)=140 | | -3b-4+2=19 | | 4x+(2x-10)+(2x+30)=180 | | 4x+(2x-10)+2x+30=180 | | 9/3=b/7 | | 4x+36+2x+2x=-4x-24-3x | | n/52=18/12 | | –5w=2−7w | | v+2=16 | | 3a+4(11)=101 | | 12x²-6x=0 | | c+-5=-1 | | n/3=28/2 | | x2+16=13 | | -336=6(-8x-8) | | 10/7=X+8/x-10 | | 5*28*x+76=172 | | 3+4x=21 -2x | | -7(p+8)-6=-90 | | 55/5=r | | 1+8n+6=7 | | 600/a=3 | | x-(6x+x)=9x | | 2x-7=4x+12 | | 7=14-3t | | x-5x=x=6x+x/x | | 3a+3a+3a=2(a+3+a+7) | | x-5x=x=6x |

Equations solver categories