-2/3u-7/2=1/2u-5

Simple and best practice solution for -2/3u-7/2=1/2u-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/3u-7/2=1/2u-5 equation:



-2/3u-7/2=1/2u-5
We move all terms to the left:
-2/3u-7/2-(1/2u-5)=0
Domain of the equation: 3u!=0
u!=0/3
u!=0
u∈R
Domain of the equation: 2u-5)!=0
u∈R
We get rid of parentheses
-2/3u-1/2u+5-7/2=0
We calculate fractions
(-16u)/24u^2+(-3u)/24u^2+(-21u)/24u^2+5=0
We multiply all the terms by the denominator
(-16u)+(-3u)+(-21u)+5*24u^2=0
Wy multiply elements
120u^2+(-16u)+(-3u)+(-21u)=0
We get rid of parentheses
120u^2-16u-3u-21u=0
We add all the numbers together, and all the variables
120u^2-40u=0
a = 120; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·120·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*120}=\frac{0}{240} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*120}=\frac{80}{240} =1/3 $

See similar equations:

| 3x+4+3x=58 | | 3(s−8)=6 | | 2(6x+5)=106 | | 0.7x-0.3x=6.4 | | 5(d+3)=24 | | -32-8h=9(3h+5) | | w+27/8=30/6 | | y=(9/5)y+32 | | -7(s-82)=-63 | | 1/3x+2/5=1/5+8/5x | | 5(9x-4)=6x+6 | | 5(3x-1)-3(2x-19)=2(4x+1)-1 | | 66(x-2)=-18 | | 7x+8+4x=-x+3x+8 | | 3x+-1x+7=-15 | | 4x+x+4=8x-3x+3 | | -24=-0.4k | | 5x+2=4x=6 | | -6r-36=-30-10r+4r | | 7(s-3)=0 | | 5x-15=33-3x-10x | | 2m-2m+m+m=10 | | 3(3x+6)+x=2(5x+1)-2 | | 4x+6+8x+18=180 | | 5x-15=33-13x | | (1/21)=(x/12) | | 4x+6+8x+18=90 | | |5n+10|=45 | | n+15/16=1301/4 | | 0.29=x^2+x | | x(x+25)=310 | | 3(r-6)+2=4(7+-1) |

Equations solver categories