-2/3x+-4/3=1/6x+1

Simple and best practice solution for -2/3x+-4/3=1/6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/3x+-4/3=1/6x+1 equation:



-2/3x+-4/3=1/6x+1
We move all terms to the left:
-2/3x+-4/3-(1/6x+1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x+1)!=0
x∈R
We add all the numbers together, and all the variables
-2/3x-(1/6x+1)-4/3=0
We get rid of parentheses
-2/3x-1/6x-1-4/3=0
We calculate fractions
(-12x)/162x^2+(-27x)/162x^2+(-24x)/162x^2-1=0
We multiply all the terms by the denominator
(-12x)+(-27x)+(-24x)-1*162x^2=0
Wy multiply elements
-162x^2+(-12x)+(-27x)+(-24x)=0
We get rid of parentheses
-162x^2-12x-27x-24x=0
We add all the numbers together, and all the variables
-162x^2-63x=0
a = -162; b = -63; c = 0;
Δ = b2-4ac
Δ = -632-4·(-162)·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3969}=63$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-63}{2*-162}=\frac{0}{-324} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+63}{2*-162}=\frac{126}{-324} =-7/18 $

See similar equations:

| 20+2(3x+10)=2x−3(3+x | | f÷11=-27 | | 12-3(t=5-1) | | 9^2^x^+^3=27^+^5 | | -n/3+4=7 | | 8x+9x-69=46-6x | | x+120=113 | | 8+|m|=13 | | 2y+(-1)=7 | | y-3=2(1+1) | | 3x−12=4x−7 | | k(k–7)=18 | | 11=w/2-11 | | 5^{2x}=11 | | g2–7g=10 | | 16x^2+128x-100=0 | | 16x^2+16x-100=0 | | 9*5^-4c-3=88 | | -7/3y-7/4=3/4y-1 | | 8(2x-7)=88 | | n–2=15.4 | | 4(2x-8)=(1)/(4)(8x+48)+(1)/(2)x | | -7x=-196 | | x9-18=-32 | | 5n=2(5)* | | x+25-12+6=68 | | 6(5n–4)=36. | | 13^x=2197 | | 5(k+2)=-55 | | 1/3(x-2)=2/3x+4 | | 7-6a+8=-9-3a | | -2v-1=1-2v |

Equations solver categories