-2/3x-11/3=1/6x+1

Simple and best practice solution for -2/3x-11/3=1/6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/3x-11/3=1/6x+1 equation:



-2/3x-11/3=1/6x+1
We move all terms to the left:
-2/3x-11/3-(1/6x+1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x+1)!=0
x∈R
We get rid of parentheses
-2/3x-1/6x-1-11/3=0
We calculate fractions
(-12x)/162x^2+(-27x)/162x^2+(-66x)/162x^2-1=0
We multiply all the terms by the denominator
(-12x)+(-27x)+(-66x)-1*162x^2=0
Wy multiply elements
-162x^2+(-12x)+(-27x)+(-66x)=0
We get rid of parentheses
-162x^2-12x-27x-66x=0
We add all the numbers together, and all the variables
-162x^2-105x=0
a = -162; b = -105; c = 0;
Δ = b2-4ac
Δ = -1052-4·(-162)·0
Δ = 11025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{11025}=105$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-105)-105}{2*-162}=\frac{0}{-324} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-105)+105}{2*-162}=\frac{210}{-324} =-35/54 $

See similar equations:

| y-7/4=2/5 | | 60+25x=35+20 | | -4(w+7)=-8w-44 | | 5(4+2x)-(8x+12=68 | | 3/x=1/82 | | 3(x−9)=4−2(x+2) | | 6b^2+12b-7=0 | | b+1/2=6 | | 2(m-2)/7=m-1 | | n/3+20=18 | | 5=7+2w+2 | | -13-3x=x+9 | | |-6x|-10=-64 | | -6+3u=-27 | | -3(u-9)=7u-43 | | m+101=25 | | 8h=44 | | 10=x+50 | | 1/2a+3/4=1/2(a+3/2) | | -3(u-9)=7u-23 | | X-1/2=x+3/3 | | 77=8v-3 | | x-3=162 | | (5x/9)+1/3=2 | | -2u-18=2(u+1) | | 46=-2-6n | | (7/(x+5))+(x=3)/(x^2-25)+(8/(x-5)) | | 5.2÷c+81.9=47.2 | | 51/3+v=-12 | | c÷5.2+81.9=47.2 | | 4t=24/35 | | X/5-2(2x/5+1))=28 |

Equations solver categories