-2/5k-3/5=-4+6/7k

Simple and best practice solution for -2/5k-3/5=-4+6/7k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/5k-3/5=-4+6/7k equation:



-2/5k-3/5=-4+6/7k
We move all terms to the left:
-2/5k-3/5-(-4+6/7k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 7k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-2/5k-(6/7k-4)-3/5=0
We get rid of parentheses
-2/5k-6/7k+4-3/5=0
We calculate fractions
(-14k)/875k^2+(-750k)/875k^2+(-21k)/875k^2+4=0
We multiply all the terms by the denominator
(-14k)+(-750k)+(-21k)+4*875k^2=0
Wy multiply elements
3500k^2+(-14k)+(-750k)+(-21k)=0
We get rid of parentheses
3500k^2-14k-750k-21k=0
We add all the numbers together, and all the variables
3500k^2-785k=0
a = 3500; b = -785; c = 0;
Δ = b2-4ac
Δ = -7852-4·3500·0
Δ = 616225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{616225}=785$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-785)-785}{2*3500}=\frac{0}{7000} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-785)+785}{2*3500}=\frac{1570}{7000} =157/700 $

See similar equations:

| n-78=7 | | 4(x+1)+6-3-2(x+1=11 | | x+3+2x=3x+ | | 7x+7(x+4)=98 | | y=500*1.08^16 | | c=3c-92 | | 7c-8-2c=7 | | t+52+15t-96=180 | | 99=v+8 | | 9(2b-6)=18 | | 3/2z+3=-1/2z+9 | | 2(6x-1)-x+7=0 | | 2/n=2.5/4.5 | | 1.24x=2.48(x/3) | | 11c+12=12 | | .2/n=2.5/4.5 | | 87.5=5(.5(5h)) | | (8y+4)=5*7y-133 | | 3d+16=-2(5-33d | | 14(m+7)=3(m-4) | | 3t-3t+2t+t+2=14 | | y5/3=7/1028/9 | | 11c-57=7c-33 | | x/15=-75 | | 2-4x=-x-8 | | 1.24x=2.48*x/3 | | 7t-32=9t-76 | | 5p+3p-4p-2p=16 | | y/4-5=7 | | 6y+40=4y-24 | | 5r-r+3r+1=8 | | 2(59-x)=71-5x |

Equations solver categories