-2/7k-5/7=3+8/3k

Simple and best practice solution for -2/7k-5/7=3+8/3k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/7k-5/7=3+8/3k equation:



-2/7k-5/7=3+8/3k
We move all terms to the left:
-2/7k-5/7-(3+8/3k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 3k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-2/7k-(8/3k+3)-5/7=0
We get rid of parentheses
-2/7k-8/3k-3-5/7=0
We calculate fractions
(-6k)/1029k^2+(-2744k)/1029k^2+(-15k)/1029k^2-3=0
We multiply all the terms by the denominator
(-6k)+(-2744k)+(-15k)-3*1029k^2=0
Wy multiply elements
-3087k^2+(-6k)+(-2744k)+(-15k)=0
We get rid of parentheses
-3087k^2-6k-2744k-15k=0
We add all the numbers together, and all the variables
-3087k^2-2765k=0
a = -3087; b = -2765; c = 0;
Δ = b2-4ac
Δ = -27652-4·(-3087)·0
Δ = 7645225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7645225}=2765$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2765)-2765}{2*-3087}=\frac{0}{-6174} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2765)+2765}{2*-3087}=\frac{5530}{-6174} =-395/441 $

See similar equations:

| x+5/9=1 | | 4-3q=43 | | -14k=-84 | | x+8+5x=32-3x | | -4+a=-22 | | 8x+12=4(3+2x | | -75=-15p | | 8x-6=78 | | 2(2x-3)=(2+5)^2 | | 4(3x+9)=3(5x+9) | | 12000+x=x(.166665) | | -16-16v=v-5v | | 28=-2x+3+7x | | 9/2=45/x | | 4x-5=7-9x | | 7/14*x=140 | | 5x-3+8x-4=180 | | 7x=12=84 | | 7/15*x=140’ | | 21/4=x/12 | | 5x16+4/5x-26=106 | | r-(-10)=10 | | 23=2x+3+6 | | 238=14k | | -2+3/2x+8-x=-14 | | x+2/7=1 | | 3(x-5)=-2(-x-6) | | 10=a-(-1) | | 4x-10=7x+20 | | w-15=3.7 | | 2x(3+3)+20=-6-12+14 | | 7(x÷5)=(7x+35) |

Equations solver categories