If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2/9k+-2/7=-9-6/7k
We move all terms to the left:
-2/9k+-2/7-(-9-6/7k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-2/9k-(-6/7k-9)+-2/7=0
We add all the numbers together, and all the variables
-2/9k-(-6/7k-9)-2/7=0
We get rid of parentheses
-2/9k+6/7k+9-2/7=0
We calculate fractions
(-686k)/3087k^2+54k/3087k^2+(-18k)/3087k^2+9=0
We multiply all the terms by the denominator
(-686k)+54k+(-18k)+9*3087k^2=0
We add all the numbers together, and all the variables
54k+(-686k)+(-18k)+9*3087k^2=0
Wy multiply elements
27783k^2+54k+(-686k)+(-18k)=0
We get rid of parentheses
27783k^2+54k-686k-18k=0
We add all the numbers together, and all the variables
27783k^2-650k=0
a = 27783; b = -650; c = 0;
Δ = b2-4ac
Δ = -6502-4·27783·0
Δ = 422500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{422500}=650$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-650)-650}{2*27783}=\frac{0}{55566} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-650)+650}{2*27783}=\frac{1300}{55566} =650/27783 $
| 4x^2+10x+15=0 | | -5x^2-13x+42=6x^2 | | 20*x+100=30*x+50 | | 7x=14+0 | | x/3=(x+1)/2 | | 4/3+3x/5=44/15 | | -4x+35=2 | | 5/2-2/5x=5+x | | 3(2m-2)-2(3m-6)-10m=0 | | (8x-16)/40=(50-5x)/40 | | 2(4k-8)-4(5k+7)-10K=0 | | 2(4x-4)-4(3x+5)-16x=0 | | 9x+11=8x+4 | | (7x-1)-(2x+8)=0 | | 2(3r+8)-3(r-6)=0 | | 0.2x^2-80x+3000=0 | | 7x-2/8=9x+3/40 | | 2(3z-1)-18=0 | | 5(4x+12)-36=140-6(2x-2) | | -8x+5x+20-11x=0 | | 2b-4-9b-6=0 | | 1/35t-3/7=1/42 | | F(x)=(x+3) | | 200=-9x+380¨ | | F(x)=x+3/x-2 | | 5^x+5^(-x)=30 | | 8x+3-5x=-2(x+1) | | 2,5x-5=3,5x-17 | | x-2x=33 | | 200=-9x+380 | | 5^x+5^-x=30 | | -4(3r-7)=112 |