If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2/9k+7/9=-5+5/3k
We move all terms to the left:
-2/9k+7/9-(-5+5/3k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 3k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-2/9k-(5/3k-5)+7/9=0
We get rid of parentheses
-2/9k-5/3k+5+7/9=0
We calculate fractions
(-6k)/2187k^2+(-3645k)/2187k^2+21k/2187k^2+5=0
We multiply all the terms by the denominator
(-6k)+(-3645k)+21k+5*2187k^2=0
We add all the numbers together, and all the variables
21k+(-6k)+(-3645k)+5*2187k^2=0
Wy multiply elements
10935k^2+21k+(-6k)+(-3645k)=0
We get rid of parentheses
10935k^2+21k-6k-3645k=0
We add all the numbers together, and all the variables
10935k^2-3630k=0
a = 10935; b = -3630; c = 0;
Δ = b2-4ac
Δ = -36302-4·10935·0
Δ = 13176900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13176900}=3630$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3630)-3630}{2*10935}=\frac{0}{21870} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3630)+3630}{2*10935}=\frac{7260}{21870} =242/729 $
| w^2-8w-10=0 | | 5.3=7.3-0.5x | | ∣∣y∣∣−2=0 | | 5w^2-40w-50=0 | | 4(2x-1)+3=11 | | 5x^2+20x+20=1815 | | 3C+7Z-11g= | | -5-6(-3r+4)=4r+15 | | (11x2x)-1=21 | | -1(-6x-5)=4(5x+3) | | 3x-12=5*(x-3*(7-2X)-7) | | 7x=10-5(3x-3) | | 9(y-4)=-10(y=21/3) | | -6-6(a-8)=90 | | 2(x-0,5)=5x-(2x-1) | | 4-v=4 | | x=3/3=x+4/4 | | 3w2=192 | | -6(x+1)=-4x | | 4+11m=m | | 192=3w2 | | 4+11m=7m-5 | | 2(x-0,5)=5x+(2x-1) | | 10y-5-7y=2y+10 | | 273-u=18 | | (6m+7)^2=m | | 8m-15+3m=84 | | 5(a-10=3a+15 | | 34m-15=2m+8 | | 34m-15=2m-8 | | -x+289=56 | | 3x^2+x=145 |