-2/9k+9/8=-49/2k

Simple and best practice solution for -2/9k+9/8=-49/2k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/9k+9/8=-49/2k equation:



-2/9k+9/8=-49/2k
We move all terms to the left:
-2/9k+9/8-(-49/2k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 2k)!=0
k!=0/1
k!=0
k∈R
We get rid of parentheses
-2/9k+49/2k+9/8=0
We calculate fractions
324k^2/1152k^2+(-256k)/1152k^2+28224k/1152k^2=0
We multiply all the terms by the denominator
324k^2+(-256k)+28224k=0
We add all the numbers together, and all the variables
324k^2+28224k+(-256k)=0
We get rid of parentheses
324k^2+28224k-256k=0
We add all the numbers together, and all the variables
324k^2+27968k=0
a = 324; b = 27968; c = 0;
Δ = b2-4ac
Δ = 279682-4·324·0
Δ = 782209024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{782209024}=27968$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27968)-27968}{2*324}=\frac{-55936}{648} =-86+26/81 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27968)+27968}{2*324}=\frac{0}{648} =0 $

See similar equations:

| (5(x+5)/8)=3x+15 | | 7x-35=x+13 | | (5x+10)+(8x+15)=90 | | 0.0625+y=0.0104166667 | | x/2=7/13 | | 4x+6=-2(x+3)+12 | | 3y+4=27 | | 3(4x+12)=180 | | n−35=26 | | (7x+15)+(8x+15)=180 | | u−25=7 | | 2q=78 | | 3=y4 | | (3x+5)+(12x+25)=90 | | 4y²+16y+15=0 | | 1/4y-10=1/7y | | 2(−3x+4)=5x+2 | | 38 = n12 | | 2x-6=2x=-6 | | 3x-4-x=2x-6 | | -8r=65 | | 4x+(3x+7)=180 | | a²+8a=-15 | | 124x=180 | | x+x*x=72 | | -15t^2-23t+28=0 | | 5x*20=70 | | 2-3x=x=10 | | -17-m=-59 | | 4z+1=3-2z | | (X-7)+90+(2x+16)=180 | | 5x(20)=70 |

Equations solver categories