If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2/9x-7/72x+1/8=-42
We move all terms to the left:
-2/9x-7/72x+1/8-(-42)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 72x!=0We add all the numbers together, and all the variables
x!=0/72
x!=0
x∈R
-2/9x-7/72x+42+1/8=0
We calculate fractions
4536x^2/41472x^2+(-9216x)/41472x^2+(-4032x)/41472x^2+42=0
We multiply all the terms by the denominator
4536x^2+(-9216x)+(-4032x)+42*41472x^2=0
Wy multiply elements
4536x^2+1741824x^2+(-9216x)+(-4032x)=0
We get rid of parentheses
4536x^2+1741824x^2-9216x-4032x=0
We add all the numbers together, and all the variables
1746360x^2-13248x=0
a = 1746360; b = -13248; c = 0;
Δ = b2-4ac
Δ = -132482-4·1746360·0
Δ = 175509504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{175509504}=13248$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13248)-13248}{2*1746360}=\frac{0}{3492720} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13248)+13248}{2*1746360}=\frac{26496}{3492720} =184/24255 $
| 120=25+2.5x | | -1+7r=8r+8 | | 4x+6=5x+10x-13 | | 115=1+6(9r+4) | | -2(y-3y)+4=-3(4y-y)+1+12y | | -4z+2(3z+5)=-20 | | 70=25+2.5x | | -8k-9=-7k | | 10x-15=8x-17 | | -8k-9=-7 | | -9-7x=-x-3 | | 5x+3+4x-12=90 | | x-2.5=6.75 | | a/17+10=14 | | -g+10=g | | (5x-2)/3+(3x+2)/7=2x | | T=7/8m+18 | | -35.6=-8.9c | | 0.49m+0.21=1.96 | | x2−9x+5=0 | | ?/12=xx-65=25 | | 3n=5(2n+9) | | -0.02y+0.14(200-y)=0.34y | | 7(a-6)+12=5(a-4) | | 43=3j+7 | | -23+y=8 | | 2(5c-70)=10(c-3) | | 35=4d+3d | | 4x^-4-16x^2+4=0 | | 34=d+21 | | 3t=8t-20 | | –9.7−2.5h=2.48−3.1h+6.4h |