-2/x+4=2/2x-1

Simple and best practice solution for -2/x+4=2/2x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/x+4=2/2x-1 equation:



-2/x+4=2/2x-1
We move all terms to the left:
-2/x+4-(2/2x-1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x-1)!=0
x∈R
We get rid of parentheses
-2/x-2/2x+1+4=0
We calculate fractions
(-4x)/2x^2+(-2x)/2x^2+1+4=0
We add all the numbers together, and all the variables
(-4x)/2x^2+(-2x)/2x^2+5=0
We multiply all the terms by the denominator
(-4x)+(-2x)+5*2x^2=0
Wy multiply elements
10x^2+(-4x)+(-2x)=0
We get rid of parentheses
10x^2-4x-2x=0
We add all the numbers together, and all the variables
10x^2-6x=0
a = 10; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·10·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*10}=\frac{0}{20} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*10}=\frac{12}{20} =3/5 $

See similar equations:

| 11.4x-0.8=22 | | 8a+3+a+6=180 | | 3(x-9+6)=-18 | | 25/5=8/x | | 7x-44+75=180 | | 8x+19=x+40 | | 5+10x+11x-4=180 | | 5=a/2+7 | | m/14=-6 | | 25/5=x/8 | | 3(x-9+6=-18 | | 12-2x=4x+6 | | -1.4x=6(x+2.14) | | 4y+6=7y–21 | | –10+3v=–2v+10 | | 4m/5+8=-12 | | 16x-1=14x+11 | | 8m+-12m+3m=7 | | -21=a-15 | | 4b-(-4)=(20b+20)/4 | | x+5=7.7 | | 90+x+96=180 | | 6g-3g-3g+3g=18 | | 7z=–8+6z | | 15(4x-16)=20(21) | | 2-(3x+4)=-4x+4 | | -2(s+8)=-15 | | m/5+3=1 | | -3w+14w+-11w-19w+3w=-16 | | 1/3x+1/2x=11+2/5x | | 40/5=x/10 | | -2(s+8=-15 |

Equations solver categories