If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-225+9x^2=0
a = 9; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·9·(-225)
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90}{2*9}=\frac{-90}{18} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90}{2*9}=\frac{90}{18} =5 $
| 92=−4(2r−5) | | 1/3x=-4/9 | | 0.03+0.12(x-6000)=-270 | | 9x+21+6x=7 | | 2.2+10m=6.13 | | -8+5x+6=-2 | | 8x–5=9+3(x+7) | | 7(v+7)=5v-47 | | 5n(25=5(n(5) | | 4x+11-x-9=12 | | Y=0.25+5.5x;(-1,-5.75) | | 7k+35=0 | | 4d+3=4(d+1) | | 70x+70=-140 | | 4h+10=-10 | | Y=-0.1x+5;(10,4) | | 4h+35=0 | | 30-4x+2x+14=38 | | Y=-1/2x+4;(-8,8) | | 5k-18=20 | | 12+3m=9 | | w+5=133 | | Y=-6x+1;(-1,-5) | | 6x/7=4/5 | | -4=2t-8t^2 | | 11x+5=-15 | | 1.8x+0.7=1.1-1.4 | | u/3+1/6=u/2 | | 2m-9m+5m2=8m2 | | 3a+7+2(3+3)=0 | | x^2=^589 | | 5u/2=50 |