-26-6=2x-4x(x-1)

Simple and best practice solution for -26-6=2x-4x(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -26-6=2x-4x(x-1) equation:



-26-6=2x-4x(x-1)
We move all terms to the left:
-26-6-(2x-4x(x-1))=0
We add all the numbers together, and all the variables
-(2x-4x(x-1))-32=0
We calculate terms in parentheses: -(2x-4x(x-1)), so:
2x-4x(x-1)
We multiply parentheses
-4x^2+2x+4x
We add all the numbers together, and all the variables
-4x^2+6x
Back to the equation:
-(-4x^2+6x)
We get rid of parentheses
4x^2-6x-32=0
a = 4; b = -6; c = -32;
Δ = b2-4ac
Δ = -62-4·4·(-32)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{137}}{2*4}=\frac{6-2\sqrt{137}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{137}}{2*4}=\frac{6+2\sqrt{137}}{8} $

See similar equations:

| 32​ n−32​ =6n​ +34​ | | -3-4+x)+x=-32-2x+44 | | -6x-2=8-2(3x=5) | | -9z+10z=-16 | | 4t-40=7(-2t+2) | | (2a+3)–(4a–8)=7 | | 2(2x+5)=-30 | | 13m-9m-7=-21 | | C(x)=50.00-0.05(20) | | (x+0.2)=0.489897949 | | 1+x/8=1 | | 4=15r×1 | | 6+n/3=3 | | x+8=105 | | 2(y-5)=4y-10 | | 7n+12=–23 | | (a^2)-9a+28=0 | | (2x+40)+x+(x-12)=180 | | x/8+14=70 | | 16=4(s+1) | | (6-8)+4=x | | 10(-5x+4)=20x(2-4) | | -3(-3x+5)=-60 | | x/814=70 | | 18c-16c-2=14 | | 7=9+x/2 | | 2x+5x-12=5+6 | | x/8=14=70 | | -8m=30 | | 110,000x=0.1234 | | 4x+2(x-6)=13 | | (x+0.2)(x+0.2)=±0.489897949 |

Equations solver categories