-26/5k+3/2k=-37/20

Simple and best practice solution for -26/5k+3/2k=-37/20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -26/5k+3/2k=-37/20 equation:



-26/5k+3/2k=-37/20
We move all terms to the left:
-26/5k+3/2k-(-37/20)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
We get rid of parentheses
-26/5k+3/2k+37/20=0
We calculate fractions
740k^2/400k^2+(-2080k)/400k^2+600k/400k^2=0
We multiply all the terms by the denominator
740k^2+(-2080k)+600k=0
We add all the numbers together, and all the variables
740k^2+600k+(-2080k)=0
We get rid of parentheses
740k^2+600k-2080k=0
We add all the numbers together, and all the variables
740k^2-1480k=0
a = 740; b = -1480; c = 0;
Δ = b2-4ac
Δ = -14802-4·740·0
Δ = 2190400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2190400}=1480$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1480)-1480}{2*740}=\frac{0}{1480} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1480)+1480}{2*740}=\frac{2960}{1480} =2 $

See similar equations:

| 12x+5=9x+47 | | 2x-1=3x-2=24 | | 5a2-27a+10=0 | | 6+6x-6x=6 | | 84=-6(v-8) | | 12w+18=4w+56 | | m+51/12=83/6 | | 8(4-2x=4(3-5x)+4x | | x+-55.9=24.3 | | 2x+34+5x=180 | | 27.1+x=-40.2 | | 7x+24=-x+112 | | -4a-3=10 | | x+20=1802x+16=180 | | X⁴+2x³-3x²=0 | | 7-4x/2= | | w+5w=16 | | 16x=20-8 | | 2x/5+4x/5=2x+21/30 | | (81)-4÷(729)2-x=94x | | 6.45=x-5.7 | | 49=7²y⁻¹ | | 1=9-7/2g= | | 3x+8=8x-18+11 | | 7x-2+3x=5x+1 | | 2x+10=8x+12 | | w+(w*5)=16 | | 9x4–28x2+3=0 | | 14•y=210 | | 15x-46=14 | | (4b-10)°=(2b-2)° | | (D³+16D)y=0 |

Equations solver categories